
  

 
 

AFRL-RX-WP-TR-2013-0209 
 
 
 

COLLABORATIVE RESEARCH AND DEVELOPMENT 
(CR&D) III 
Task Order 0089:  Dislocation Evolution and Crystal Plasticity 
Methods 
 
 
Craig S. Hartley 
El Arroyo Enterprises, LLC 
 
 
 
NOVEMBER 2012 
Final Report 
 

 
 
 
 
 

Approved for public release; distribution unlimited. 
 

See additional restrictions described on inside pages. 
 

STINFO COPY 
 
 

AIR FORCE RESEARCH LABORATORY 
MATERIALS AND MANUFACTURING DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH  45433-7750 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 



  

NOTICE AND SIGNATURE PAGE 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or 
permission to manufacture, use, or sell any patented invention that may relate to them.  
 
This report was cleared for public release by the 88th ABW Public Affairs Office (Case Number: 
88ABW-2013-4550, dated Oct 31, 2013) and is releasable to the National Technical Information 
Service (NTIS). It is available to the general public.  
 
Qualified requestors may obtain copies of this report from the Defense Technical  
 Information Center (DTIC) (http://www.dtic.mil). 
 
AFRL-RX-WP-TR-2013-0209 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
___//SIGNATURE//_____________________    ___//SIGNATURE//________________ 
CHRISTOPHER WOODWARD, Project Engineer    DANIEL EVANS, Chief 
Metals Branch                 Metals Branch 
Structural Materials Division       Structural Materials Division 
 
 
 
 
___//SIGNATURE//_____________________ 
ROBERT T. MARSHALL, Deputy Chief          
Structural Materials Division        
Materials and Manufacturing Directorate 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 
 



  

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

November 2012                 Final 30 April 2010 – 07 October 2012 
4.  TITLE AND SUBTITLE 

COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) III 
Task Order 0089:  Dislocation Evolution and Crystal Plasticity Methods 

5a.  CONTRACT NUMBER 
FA8650-07-D-5800-0089 

5b.  GRANT NUMBER 

5c.  PROGRAM ELEMENT NUMBER 
62102F 

6.  AUTHOR(S)  
   Craig Hartley 

5d.  PROJECT NUMBER 
4347 

5e.  TASK NUMBER 
5f.  WORK UNIT NUMBER 

X0R9 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION REPORT 

NUMBER 

El Arroyo Enterprises, LLC      for: Universal Technology Corporation 
231 Arroyo Sienna Drive  1270 N. Fairfield Road 
Sedona, AZ 86336-6341  Dayton, OH 45432-2600 

 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING AGENCY 
ACRONYM(S) 
AFRL/RXCM 

Air Force Research Laboratory 
Materials and Manufacturing Directorate 
Wright-Patterson Air Force Base, OH  45433-7750 
Air Force Materiel Command 

    United States Air Force 

11.  SPONSORING/MONITORING AGENCY 
REPORT NUMBER(S) 

       AFRL-RX-WP-TR-2013-0209 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13.  SUPPLEMENTARY NOTES      
  PA Case Number: 88ABW-2013-4550; Clearance Date: 31 Oct 2013.  This document contains color. 

14.  ABSTRACT (Maximum 200 words)   
 This research in support of the Air Force Research Laboratory Materials and Manufacturing Directorate was conducted 
for Wright-Patterson AFB, Ohio from 30 April 2010 through 07 October 2012.  The objective of this research effort 
was to develop self-consistent methods for coarse graining results of dislocation dynamics simulations to inform crystal 
plasticity methods. 

15.  SUBJECT TERMS  
dislocation dynamics, dislocation density vectors, micro-constitutive equations 

16.  SECURITY CLASSIFICATION OF: 17. LIMITATION  
OF ABSTRACT: 

 
SAR 

18.  NUMBER 
OF PAGES 

    
   36 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 

Christopher Woodward 
a.  REPORT 

Unclassified 
b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

19b.  TELEPHONE NUMBER (Include Area Code) 
(937) 255-9816 

 Standard Form 298 (Rev. 8-98)         
Prescribed by ANSI Std. Z39-18 

 



i 
Approved for public release; distribution unlimited. 

TABLE OF CONTENTS 
Section Page 
LIST OF FIGURES ........................................................................................................................ ii 

1.0 SUMMARY ............................................................................................................................1 

2.0 INTRODUCTION ..................................................................................................................3 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ..........................................................4 

3.1 Review ...........................................................................................................................4 

3.2 Deformation Gradient in the Dislocated Discrete Lattice..............................................6 

3.3 The Description of Deformation and the Mechanical Cycle .........................................8 

3.4 The Nye Tensor and Lattice Deformation ...................................................................13 

3.4.1 Definition of the Dislocation Density Vector ..................................................15 

3.4.2 Derived DDVs and Their Interpretation ..........................................................17 

3.5 Motion of Groups of Dislocations ...............................................................................22 

4.0 RESULTS AND DISCUSSION ...........................................................................................24 

4.1 Background ..................................................................................................................24 

4.2 Plane Strain Deformation .............................................................................................24 

4.3 Nye Tensor Components..............................................................................................25 

5.0 CONCLUSIONS AND RECOMMENDATIONS ...............................................................27 

6.0 REFERENCES .....................................................................................................................28 

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ................................................31 



ii 
Approved for public release; distribution unlimited. 

LIST OF FIGURES 
Figure Page 
Figure 1.  Deformation Mappings and Configurations for Single Crystal RVE .......................... 13 

Figure 2.  Dislocations Intersecting Volume Element .................................................................. 15 

Figure 3.  Possible Configuration of S and E Projections of DDV............................................... 19 

Figure 4.  Relationship of GN DDV to S and E Components ...................................................... 19 

Figure 5.  Relationship among Derived DDVs ............................................................................. 21 

 

 

 



1 
Approved for public release; distribution unlimited. 

PA Case Number: 88ABW-2013-4550; Clearance Date: 31 Oct 2013. 

1.0 SUMMARY 
The research described in this report was initiated under Subcontract 10-S587-0089-01-C1, 
having the following SOW: 

The contractor shall: 

• Assist in creating a computer-driven research tool for the stereological analysis of the 
dislocation arrays produced by dislocation dynamic simulations, as provided by the 
on-site research staff. 

• Employ the dislocation density description for glide and forest dislocations in order to 
establish the method as a reliable post processing tool for dislocation dynamics. 

• Develop and validate micro-scale empirical constitutive-relationships relating 
dislocation content, distribution and evolution to local deformation (i.e. visco-plastic 
flow). 

• Incorporate this description of dislocation density evolution into crystal plasticity 
methods, such as the Visco-Plastic Self Consistent crystal plasticity method, and 
validate this methodology. 

Work performed was based on El Arroyo Enterprises Proposal dated April 9, 2010, which 
proposed a period of performance of May 1, 2010 through September 30, 2012.  Consulting time 
for research was proposed at the rate of \$80.00/hr for 312 hrs. in each of FY 2010 and 2011 and 
388 hrs. in FY 2012.  Actual billing was for 161 hours in FY 2010, 367 hours in FY 2011 and 
297 hours in FY 2012.  Billing and monthly reporting were suspended after May 31, 2012 upon 
notification that the balance of funds originally authorized for FY 2012 was not available.  As a 
result, only the first three items in the SOW were addressed during the period of performance.   

The original quote from El Arroyo Enterprises also included line items for travel to W-PAFB 
approximately one time per fiscal year to discuss research progress with AFRL/RX personnel, 
and for publication costs for up to four articles in technical journals during the period of the 
agreement.  As the work progressed, El Arroyo Enterprises elected to eschew billing separately 
for travel and publication expenses; to subsume the allocated funds into consulting hours and to 
absorb such expenses as might be incurred for these purposes from El Arroyo corporate 
resources. 

In addition the Principal Investigator, Dr. Craig S. Hartley, was a guest researcher at the Max 
Planck Institut für Eisenforschung, Düsseldorf, Germany, during the periods May 1 - July 25, 
2010 and June 6 - July 29, 2011, where he worked with MPIE personnel on development of the 
theory on which work on this subcontract is based.  No consulting time was billed for this 
supporting effort.   

Results of research related to the subject of this subcontract were presented at six international 
scientific meetings, listed below.   

1. “Representation of Dislocation Dynamics Simulations", Craig S. Hartley, Jaafar A. 
El Awady and Christopher Woodward, Proceedings of MMM 2010, October 4 - 8, 
2010, Freiburg, Germany
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2. "Mobility of Dislocation Populations as a Thermally Activated Process", Craig S. 
Hartley, TMS Annual Meeting, 2011, San Diego, CA 

3. "Dislocation Evolution During Plane Bending of a BCC Crystal", Craig S. Hartley, 
Bing Liu and Dierk Raabe, Proceedings of Plasticity 2012, San Juan, PR 

4. "Direct and Derived Dislocation Density Vectors", Craig S. Hartley, TMS Annual 
Meeting 2012, Orlando, FL 

5. "Multiscale Modeling - Extending the Design Space" Mechanics of Materials, 
Mathematisches Forschungsinstitut Oberwolfach, March 18 - 24, 2012, 
Oberwolfach, Germany 

6. “Dislocation Density Vectors in FCC Crystals Deformed in Plane Strain”, Craig S. 
Hartley, to be presented at Plasticity 2013, Nassau, Bahamas, Jan. 3 – 9, 2013. 

In addition to these presentations two scientific papers have been prepared and submitted based 
on the research supported by this subcontract.  The first, a paper co-authored by Craig S. Hartley, 
J. A. El Awady, B. Liu, C. Woodward and D. Raabe, was submitted first to Acta Materialia in 
2010 and rejected as not appropriate for the journal.  The paper was revised and submitted to 
Modeling and Simulation in Materials Science and Engineering later in 2011.  This journal 
required revision of the manuscript before reconsideration for publication.  Dr. Hartley has now 
taken the responsibility for revising the manuscript based on referee's comments, later results and 
developments and preparing it for submission to MSMSE or another scientific journal. 

Dr. Hartley co-authored a paper with Dr. J. A. Clayton and Prof. D. McDowell on the topic of 
the physical interpretation of terms involved in the decomposition of total deformation.  This 
work forms the foundation of the interpretation of the components of deformation that make up 
the description of the dislocated crystal.  In this paper we point out that conventional 
interpretation of the components of deformation employed in contemporary treatments of crystal 
plasticity fail to account for the lattice deformation due to internal defects, which is the source of 
internal stresses.  A modification to the conventional means of expressing the decomposition is 
proposed, which accounts for this missing term.  The paper has been submitted to the 
International Journal of Plasticity, where it will appear in a special issue commemorating the 
contributions of Prof. Hussein Zbib. 

The first section of this report summarizes the principal features of the modifications to the 
mathematical treatment of continuum mechanics and crystal plasticity introduced by 
consideration of the additional component of distortion due to dislocations and internal defects.  
Next, we review important features of the Dislocation Density Vector concept.  Next, we 
introduce the concept of the Direct and Derived DDVs that put into vector form the concepts of 
Geometrically Necessary and Statistically Stored dislocation content introduced by Ashby [2].  
Following that, we describe the application of this concept to the description of results of 
Dislocation Dynamics calculations and selected experiments.  Recommendations based on the 
results of this research conclude the report. 
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2.0 INTRODUCTION 
The critical interface between physics-based models of deformation and the design process 
occurs when models of deformation at the microscopic scale are inserted into codes employed to 
design engineering components at the macroscopic scale.  This involves creating a transition 
from the physicists’ view of deformation of crystals as a many-body problem governed by the 
laws of atomic physics to the mechanist/designer’s point of view that regards engineering 
materials as continua with properties determined by empirical methods.  In the former case the 
fundamental entities are atoms or groups of atoms, while the latter considers structures on a scale 
determined by the size of the application.  The task of applying knowledge of material properties 
and behavior at the atomic scale to inform models employed in engineering design has proved to 
be one of the most enduring challenges of modern engineering science. 

Research performed on this subcontract was initiated to exploit advances in computational 
models of the behavior of groups of dislocations, known as Dislocation Dynamics (DD), to 
develop analytic expressions relating the behavior of such groups to the external forces required 
to change the shape of crystals of finite size and a quantitative description of the resulting 
deformation.  Such expressions, called micro-constitutive equations (MCE), are necessary input 
to models of material behavior employed in engineering design codes. 

The process begins by constructing a computational volume with properties characteristic of a 
selected material.  Within this volume, dislocation sources are initially present, having distortion 
fields calculated from well-established equations of dislocation mechanics.  At a series of 
computational steps, the test volume is subjected to known boundary conditions, causing the 
initial dislocation configuration to respond to these as well as to the mutual forces between 
dislocations.  The output of the calculations at each step consists of a listing of the instantaneous 
positions of the dislocation segments as well as any new dislocations resulting from possible 
interactions among prior existing dislocations.  This output is typically displayed in a visual 
format, often as an animated sequence of successive dislocation structures.  At present there is no 
universally accepted means of describing quantitatively the ensemble of dislocations in the 
deformed structure in a form that would be useful to employ in the construction of MCEs.   

An attractive feature of the computational DD approach lies in the fact that it can be applied to 
perform virtual experiments at a physical scale generally incapable of being achieved by 
comparable experiments on real crystals.  In the few cases where such physical experiments have 
been performed, they have been shown to be difficult to interpret and to apply to the deformation 
of crystals at the larger scales required for most engineering components [33, 34].  Therefore a 
compelling argument exists for employing computational methods, such as DD, to supplement 
experiments on real materials by performing selected calculations in order to create a broader, 
physics-based modeling process for describing the behavior of engineering materials [26].  The 
principal challenge lies in the development of suitable means of employing the results of such 
calculations in the construction of the relationships necessary for use in engineering design 
codes.  The research described in this report addresses several aspects of this problem.   



4 
Approved for public release; distribution unlimited. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
3.1 Review 
Analysis of deformation of a crystalline body is typically based on approximating the atomic 
array by a continuum, throughout which source and response fields are continuously distributed.  
When crystal defects are present these fields are not necessarily continuous and continuously 
differentiable, but can contain a finite population of discontinuities.  The success of 
approximating a many-body treatment by a continuum field theory relies on the applicability of 
the ergodic assumption that the ensemble averages of properties of the discrete array are 
adequately approximated by the temporal and volumetric averages of the properties taken over 
the volume occupied by the array and the time of observation. 

It follows that there exists a regime of size* where ensemble averages can replace continuum 
variables in the application of field theories of deformation.  This approximation of an array of 
discrete atoms by a continuous distribution of matter is adequate for treating deformation of 
material volumes containing a large population of atoms and defects in the atomic array.  In the 
following discussion we employ this concept to define such quantities as the deformation 
gradient and the incompatibility associated with deformation of a continuum. 

Approximations made to obtain solutions for deformation problems in crystalline materials 
containing dislocations frequently obscure the local character of the dislocation distribution.  
Such approximations are usually justified on the basis of the scale of the problem being solved, 
e.g. if only far-field properties are of interest, the details of a dislocation distribution with a zero 
resultant Burgers vector may be ignored.  However when stresses, strains and lattice rotations at 
the level of the mean spacing between dislocations are of interest, the details of the distribution 
become a major part of the problem being solved. 

The dislocated continuum introduced by Kröner [17, 18, 19], widely employed in the literature 
on crystal plasticity [8, 28] is built up of a mosaic of compact elements having slightly different 
lattice orientations.  In this "mosaic continuum" deformation of the elements occurs by the 
passage of dislocations entirely through them, so that when the elements are joined together to 
form the global body, the dislocations reside entirely at the interfaces between the elements.  
Thus the incompatibility that characterizes the misfit between elements is localized on these 
interfaces.  In the limit as the average size of the elements approaches zero, the distribution of 
surface dislocations approaches a continuous distribution of dislocations in the body and the 
incompatibility becomes global. 

In structures with microstructure of a finite size the mosaic continuum ignores the contribution of 
dislocations within the blocks.  This neglect is justified by assuming that the addition of a 
"homogeneous" distribution of dislocations, i.e. one in which the net Burgers vector vanishes, 
has an inconsequential effect on the deformation process.  While this assumption may suffice for 
large-scale deformation problems, such as those occurring in metal forming calculations; [32], it 
can only be strictly true if the reference state is a "natural" state [17, 31] in which the 
homogeneous distribution of dislocations is initially present and takes no part in any subsequent 
deformation. 
                                                 
* For the remainder of this treatment we ignore the temporal aspect of the approximation and concentrate on the 
spatial. 
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Also, the contribution of gradients in lattice strain to the mechanical behavior of crystals requires 
analyses on the scale of the mean spacing of dislocations [8].  Finally, investigations of the 
evolution of dislocation structures and their contribution to the global deformation and stress 
fields require a clear understanding of how descriptions of a dislocation population at different 
levels of resolution relate to one another and to the physical nature of the dislocation 
arrangement.  In the following section we review the description of deformation using concepts 
of continuum mechanics and lattice geometry to illustrate that current usage of continuum 
deformation fields in crystal plasticity needs modification in order to account fully for the effects 
of dislocations. 

In order to have a concise reference to the definition of the deformation gradient concept in 
continuum mechanics, the development in this section follows the excellent summary of this 
topic due to Gullett et al. [10].  Consider a continuous body composed of an assembly of material 
points whose locations are specified by position vectors in the initial configuration.  The 
operation 

  (1) 
maps a point at X in the reference configuration, Ω0, to its image at x in the current, or deformed, 
configuration, Ω.  The deformation gradient, F, defined as  

 
 (2) 

specifies the local deformation at X. 

  (3) 
which, when expanded to first order in dX, yields  

  (4) 

by the definition of F, Equation (2).  The existence of a continuous displacement vector field, u: 
  (5) 
whence 

 
 (6) 

insures the existence of a one-to-one mapping from the reference to the deformed state and the 
integrability of F throughout the medium.  The integrability condition can be expressed in terms 
of the incompatibility, η, a symmetric, second-rank tensor defined as [19].   

  (7) 
which vanishes identically if u is continuous and thrice differentiable.  Application of the 
definition in Equation (7) requires that F have derivatives up to the second order at the point X. 

Finally we observe that the deformation of a body relative to the reference configuration can be 
described by computing the change in squared length of the reference vector: 
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  (8) 

where the superscript T indicates the transpose of a matrix and C = FTF is the right Cauchy-
Green tensor.  Measures of strain referred to the reference and current states are defined in terms 
of the dimensionless, symmetric, second order tensor in parentheses. 

We note that as a consequence of the first order approximation, Equation (6), the magnitude of 
the stretch ratio, λ = |dx|/|dX| , is a function of t = dX/|dX|, the unit vector in the direction of dX:   

 
 (9) 

which is the equation for an ellipsoid in the reference state having a radius 1\λ measured from P 
in the direction of t.  The angle, θ(t), between dX and its image in the deformed state, dx can be 
determined from  

 
 (10) 

The unit vector t in the reference state becomes the unit vector t′ = dx/|dx| in the deformed state, 
where the vectors are related by  

 
 (11) 

In the next section these equations will be used as the basis of a method for determining an 
effective value for F in cases where the absence of a continuous displacement field precludes 
determination of the deformation gradient by direct differentiation, i.e. the incompatibility does 
not vanish. 

3.2 Deformation Gradient in the Dislocated Discrete Lattice 
We now consider examples where the lack of a single-valued, continuous displacement vector 
renders Equation (6) inappropriate as a definition for F, i.e. when Equation (5) does not result in 
a single-valued, continuous and continuously differentiable displacement field.  Initial positions 
are known for all atoms in the array from the choice of a reference structure, usually a perfect 
single crystal.  After introducing a defect that maintains the material continuity, but not 
necessarily the local crystal symmetry throughout, the final configuration is determined by 
minimizing the internal energy of the array or some similar criterion.  Thus, the atomic positions 
are known in the “deformed” configuration to the same degree of precision as for the reference 
configuration.  For most of the region it is possible to identify the initial and final positions of 
individual atoms.  However in the presence of a defect that disrupts the local crystal symmetry, 
such identification may not be possible.  The question at issue is:  how are descriptions of these 
discrete systems related to the continuum model described in the previous section? 

The following development follows that of Bilby et al. [4], but where possible employs notation 
consistent with the continuum mechanics notation of the previous section.  The lattice 
deformation is obtained by choosing three non-coplanar basis vectors directed along the same 
local principal crystallographic directions in each state at every atomic location in the reference 
and dislocated (deformed) crystal.  A basis vector in these triads is indicated by iα, α = 1…3, for 
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the perfect lattice and the corresponding vector by ek, k = 1… 3, for the dislocated lattice.  At a 
typical lattice point, P, these vectors are related by a local deformation, Fkα, defined by 

  (12) 

where the argument, P, emphasizes that the deformation matrix applies to the point, P and we 
have dispensed with the contra- covariant notation employed by Bilby et al.  We also assume 
that the deformation has an inverse such that  
  (13) 
A position vector, X, in the reference state is X = Xαiα and in the deformed state, x = xkek.  
Equations (12) and (13) perform the same function relating vectors in a perfect reference lattice 
to their counterparts in the deformed lattice as does Equation (6) (and its inverse) for a 
continuum.  However, Equations (12) and (13) are constrained by considerations of local crystal 
symmetry whereas Equation (6) is not.  Also Equations (12) and (13) apply to a finite number of 
atoms located at specific positions in the vicinity of P rather than an arbitrary set of mathematical 
points.  The deformation measured as described above is necessarily a lattice deformation, since 
all measurements are made directly on atomic positions in the array.  For computational 
convenience, both sets of basis vectors are generally expressed in terms of their components 
relative to a “laboratory” (L) Cartesian coordinate system having basis vectors, y, using the 
transformations Liα  =  yi·iα and L′km = yk·em.   

While it is possible in principle to determine the deformation matrix by using the positions of 
atoms in the perfect reference lattice and in the deformed lattice to solve Equation (12) or (13) 
directly, this can only be done unambiguously in the absence of crystal defects.  When defects, 
such as dislocations, are present the identification of atoms in the deformed state with their 
positions in the reference state is not unambiguous.  See, for example, the discussion of Hartley 
and Mishin [15] on this point.  A lattice correspondence matrix, , is defined for each 
neighbor to the atom at P in terms of the lattice vectors connecting these atoms for a selected 
number of near neighbor shells:   

 
 (14) 

The number of shells can be formally as large as desired†, but for single point and line defects in 
crystals, the range of the interatomic forces between atoms determines the number. 

In studies of dislocations in bcc and fcc crystals, Hartley and Mishin [15] chose atoms lying 
within a sphere of radius R = (R1 + R2)/2, where R1 and R2 are, respectively, the first and second 
neighbor coordination radii in the perfect lattice‡.  Since the structural ambiguity introduced by 
the presence of a defect in the computational cell renders it impossible to obtain a single matrix 
that will satisfy Equation (14) for all pairs of neighbors, it is necessary to employ a procedure 
that yields a “best fit”, in the least-squares sense, to  as applied to a selected set of 
neighboring atoms [10, 15] in order to obtain an analogue to the continuum definition of F. 

                                                 
† The number of shells considered is a measure of the “graininess” of the approximation. 
‡ This sphere is henceforth called the calculation volume. 
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Designate by [X(P)](δ) , δ = 1 … N, the set of vectors connecting the N atoms neighboring P 
within the calculation volume in the perfect lattice.  Let [x(P)](δ′), δ′ = 1 … N′, be the 
corresponding set in the deformed lattice.  With no defect in the computational volume, the same 
neighbors are unambiguously identified before and after deformation, N = N′ and δ = δ′.  
However when a defect is exists, some ambiguity of choice is often present.  Identification of 
neighbors may have to be based on criteria that preserve local lattice symmetry [15] or some 
similar considerations, and may, in fact, not be unique.  Having selected N′ pairs of vectors 
[X(P)](δ′) and their images [x(P)](δ′)  we now have N′ equations of the form of Equation (14).  The 
set of 3N equations relating [X(P)] to [x(P)] for each set of measurements can be written  

  (15) 

where and are each 3 x N′ matrices whose columns are the components of the vectors 
[X(P)](δ′) and [x(P)](δ′), respectively, and is a 3 x 3 matrix that minimizes the squares of all the 
residuals between the measured vectors and vectors calculated using .  The least-squares 
solution to Equation (15) has the form  

  (16) 

where 

 
 (17) 

is generalized inverse, or Moore-Penrose matrix, for .  The matrix of coefficients that 
compose is the analogue to the deformation gradient at P in a discrete lattice. 
In analyzing the local continuity of F in the vicinity of a dislocation, it is necessary to obtain an 
expression for its curl at points, P, in the neighborhood.  Hartley and Mishin accomplished this 
by combining finite differences of appropriate components of F evaluated at P and its nearest 
neighbors (in the perfect reference lattice).  The accuracy of such a calculation depends, 
naturally, on the size of the computational volume, but satisfactory results were obtained for cells 
of the size employed by Hartley and Mishin. 

3.3 The Description of Deformation and the Mechanical Cycle 
We§ begin by noting with Bilby, Gardner, & Smith [5] that:   

In describing the deformation of a crystal containing dislocations it is essential to 
distinguish between the deformation of the crystal lattice and that of a three-dimensional 
grid affixed to the body and deforming congruently on the micro-scale with the overall 
shape change of the crystal. 

In fact, trying to analyze the deformation of a crystal lattice in terms "a three-dimensional grid 
affixed to the body and deforming congruently on the micro-scale with the overall shape change 
of the crystal" is analogous to trying to describe the positions of oranges in a bag by analyzing 
the change of shape of the bag. 

                                                 
§ The treatment in this section is adapted from a paper written in collaboration with Dr. J. A. Clayton and Prof. D.L. 
McDowell and contains elements of their review and input. 
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The following development adapts the notation introduced by Bilby, Bullough and Smith [4] for 
describing the components of crystal deformation referred to basis vectors associated with 
deformation of the lattice and relating this basis set to one associated with changes of the overall 
shape change of the body.  Our adaptation consists of noting that the lattice correspondence 
functions introduced by Bilby et al., which relate the lattice and shape coordinate systems, 
correspond to certain components of the deformation gradient employed in continuum plasticity.  
This differs from the notation employed in much of the mechanics literature, [17, 22], which 
does not distinguish between lattice and spatial coordinates.  We choose the former because of its 
emphasis on the physical origins of the coordinate bases.   

Kröner [17] explicitly recognized the dual nature of the deformation by noting that the deformed 
crystal is a Cosserat continuum in which each mathematical point is associated with two sets of 
directors.  Coordinate systems required to describe deformation of the crystalline body are:   
1) spatial coordinates, or shape coordinates, which have basis vectors at each material point that 
are parallel to coordinate axes in a system that describes the instantaneous geometric shape of the 
body without reference to the underlying atomic structure, and 2) material coordinates, or lattice 
coordinates, which have basis vectors parallel to the local principal crystallographic directions.  
These basis vectors are the directors in a modified Cosserat continuum used to model the 
material. 

Basis vectors in the crystal lattice connect lattice points, while those in the shape coordinates 
connect material points, which are, in general, a collection of lattice points that occupy a region 
called a Representative Volume Element (RVE) [28] or a Statistical Volume Element (SVE) 
[24].  In this view the element becomes the material “point”, which is understood to be a region 
of the crystal that contains a collection of lattice points.  The coordinates of the material points 
are located at the centroids of these volume elements, which form the nodes of the shape 
coordinate system, while lattice points form the corresponding set in the lattice coordinates. 

While the manifolds of material points and lattice points occupy the same physical region in 
space, they are not coincident.  Depending on the dislocated state within a RVE there may or 
may not be an affine connection between shape coordinates and lattice coordinates.  Finally we 
note that applying crystal plasticity concepts to polycrystalline materials may require associating 
several hundred grains of differing orientations to a single material point [3].  In the following 
discussion we restrict our consideration to a single crystal containing dislocations, for which 
material points consist of groups of neighboring atoms within the crystal. 
We now consider the deformation of a local RVE of defect-free crystalline material bounded by 
a surface  and removed from the bulk crystal.  Each such element initially fits exactly into its 
neighborhood such that the global reference configuration is simply connected.  This reference 
state is unique, in contrast to a "natural state" [17, 31] which can contain an arbitrary distribution 
of internal defects that produce a self-equilibrating field of internal stress. 

We call the “mechanical cycle” a hypothetical mechanical process that converts the RVE from 
the reference state to the current (deformed) state in a manner analogous to that in which the 
Carnot cycle, a thermodynamic process, converts heat to work.  For the present we consider only 
conservative deformation processes, so that lattice sites in the element are conserved.  During the 
mechanical cycle the RVE adopts the following local configurations, or states: 

• B0 is the initial reference state, in which the RVE contains an unstressed perfect 
lattice, bounded by a traction-free surface, , at some initial time, t0.   
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•  is the stress-free intermediate state, formed from B0 at constant internal energy, 
where the RVE also contains an unstressed slipped lattice with traction-free .   

•  is the internally stressed intermediate state, formed from  at constant 
configurational entropy, where the RVE contains a slipped lattice with internal 
stresses and a traction-free . 

• B is the current state, formed from the appropriate intermediate state by applying 
suitable tractions on Σ, consisting of an externally and internally stressed slipped 
lattice at some time, t. 

The reference configuration B0, describes the RVE embedded within a larger slab of 
homogeneous material that is also unstressed in its (global) reference configuration.  This is 
always a compact state in which shape and lattice coordinates are related by an affine 
transformation.  The local current configuration B of the element is achieved when the element is 
stressed and deformed, along with its neighbors, so that all volume elements fit together and the 
body is simply connected in the global current configuration. 

Deformation of the RVE from B0 to B occurs by passing through intermediate configurations as 
noted above.  There may be one or two such configurations, depending on the nature of 
dislocation motion.  The compact and non-compact forms of the intermediate configuration , 
are formed in the following manner: 

1) The compact form results when all dislocations pass entirely through the element, in 
which case  is a compatible state.  Work done by external stresses is converted to 
heat and an increase in surface energy due to the formation of additional external 
surface area at slip steps on  where dislocations have entered and/or exited the 
element.   

2) The non-compact form results when some dislocations pass only part-way through 
the element, so that the lattice remains stress-free by introducing atomic-scale  
Mode I cracks across whose surfaces the atoms are not in contact.  Work done by 
external stresses is converted to heat and surface energy, as in 1).   

In case 1, re-insertion of the element into the matrix replicates the process employed by Kröner 
[17] to form an element of the “mosaic” continuum and is also the basis of Eshelby's treatment of 
the elastic inclusion [7]. 

If  is not a compact state, we require the element to pass through a second local intermediate 
configuration, , that is compact, prior to re-insertion into the slab.  This configuration is 
formed by collapsing the lattice around the internal discontinuities left by partial traverses of 
dislocations across the element in , thus restoring the continuity of the lattice and forming 
lattice defects at these locations.  Deformation from  to  occurs at constant configurational 
entropy, since no dislocation motion occurs.  However there will be a small increase in entropy 
due to changes in the lattice vibrational modes when the internal surfaces are removed by joining 
the adjacent crystal faces.  The surface energy of these internal surfaces is converted, 
irreversibly, to strain energy, resulting in a state of self-stress.  Surface steps on  created by the 
entrance and exit of dislocations from the element remain.  Since the element is traction free on 

, the resulting state of internal stress is self-equilibrating.  When  is a compact state, all 
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dislocations have completely traversed the RVE and , i.e. there is only one, stress-free, 
intermediate state. 
The current state is formed from a compact intermediate state at constant configurational 
entropy.  It is accompanied by an increase in internal energy due to the reversible response of the 
crystal to the imposition of tractions on  by external forces and the stress fields of defects 
elsewhere in the body.  The RVE may contain internal crystal defects plus surface dislocations 
created at the interface of  and the remainder of the crystal when the RVE is re-inserted in the 
bulk crystal.**.   

The Shape Deformation, FS, causes the element to change its configuration from B0 to B.  Since 
this deformation converts a compact state to a compact state, it is by definition compatible and 
can be written in terms of the gradient of a displacement vector, u, 

    (18) 

where I is the unit tensor and both the vector and the gradient are expressed in shape coordinates.  
The Dislocation Deformation, FD, is the volume average of the shape deformation of the RVE in 
passing from B to , expressed in shape coordinates.  Since this deformation, by definition, does 
not deform the crystal lattice, it is a stress-free deformation.  With M active slip systems on 
which dislocations of the kth system sweep out an area, A(k), per unit volume  

 
 (19) 

where b(k)  is the Burgers vector of the dislocations and A(k) is a vector with magnitude A(k) that 
points in the direction of the positive normal to the kth slip plane.  The summation in Equation 
(19) is often written in terms of the shear strain associated with slip on the kth system, , and 
the Schmid tensor, , where ηand ν are unit vectors along the slip direction and 
normal to the slip plane of the system, respectively.  This is the source of the eigenstrain 
described by Kröner [19].   
Since the lattice remains undeformed, the process occurs at constant internal energy.  However it 
causes an increase in configurational entropy due to the fact that, depending on the size of the 
element and the availability of slip systems, there are, in general, several ways that dislocations 
can traverse the element and produce the same FD.  In addition to this entropy increase, there is 
an increase in surface energy of the element due to the surfaces created by the slip steps 
produced on at the entry and exit locations of dislocations and by internal discontinuities 
caused by dislocations that do not completely traverse the element.   

Lattice distortion introduced by defects created by elimination of internal surfaces causes a 
change in internal strain energy as well as in the shape of the element in state .  This 
Incompatible Lattice Deformation, FLD, is the lattice deformation field due to the dislocations 
now present within the element, expressed in lattice coordinates.  The components of FLD 
correspond to the Lattice Correspondence Functions introduced by Bilby and co-workers [4] that 

                                                 
** Eshelby Eshelby, 1957) treats this misfit as a distribution of surface force, but notes that it can also be a 
distribution of dislocations. 
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connect lattice basis vectors to basis vectors in the shape coordinate system.  This incompatible 
lattice deformation modifies FD to give FP, the plastic deformation, which is a compatible, 
irreversible deformation associated with passage from B0 to :  FP = FLDFD.  We repeat for 
added emphasis that if FD produces a compatible deformation due to dislocations passing entirely 
through the element, , FLD = I and FP = FD.   

The volume element is deformed to the current state, B, by the application of appropriate 
tractions to  and re-insertion of the element into its original location in the slab.  This operation 
carries the compact state  to the compact state B, hence it is a compatible deformation.  This is 
the Compatible Lattice Deformation, FLC.  Note that it is the component generally called "elastic 
deformation" in treatments that ignore the presence of incompatible lattice distortion due to 
internal defects.  The components of FLC are also Lattice Correspondence Functions, connecting 
lattice to shape coordinates.  Together the two lattice distortion components comprise the Lattice 
Deformation, FL, introduced by Bilby, et al. [4]. 

The necessity for separating the lattice deformation into components due to internal sources and 
external sources has been noted previously the present author [12] and others in various contexts 
[6, 9, 16, 23, 29].  The expression relating the components assumes that of the familiar 
multiplicative decomposition of total finite deformation:   

 
 (20) 

which introduces a third component of deformation due to the separation of the lattice 
deformation into compatible and incompatible components resulting from the presence of 
dislocations and other crystal defects. 

Relationships of the deformation components to the various states of deformation are 
summarized below: 

• FS:  shape deformation associated with configuration change B0 → B 
• FD:  stress-free shape deformation due to dislocation motion all or part way through 

the element; associated with configuration change B0 →   
• FLD:  lattice deformation due to self-stress of dislocations inside the element; 

associated with configuration change   

• FLC:  compatible lattice deformation due to traction applied to the RVE boundary; 
associated with configuration change   

• FL = FLCFLD:  lattice deformation (Lattice Correspondence Functions) due to all 
sources; associated with configuration change   

• FP = FLDFD:  shape deformation remaining after release of external tractions on RVE; 
associated with configuration change .  Same as FD iff . 

Configurations and deformation mappings are illustrated in Figure 1. 
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Figure 1.  Deformation Mappings and Configurations for Single Crystal RVE 

 

Finally, we note that in most crystal plasticity treatments "elastic" deformation corresponds to 
lattice deformation while "plastic" refers to permanent deformation caused by dislocation 
motion.  In this work we choose to eschew the use of the terms elastic and plastic to refer to 
states of deformation that may contain incompatibility.  We believe that this usage introduces 
widespread misunderstanding of the physical processes that create the deformed crystal.  For 
example, when elastic deformation is defined as the deformation that is recovered when external 
loads are removed and plastic deformation as that which remains [11, 28] the plastic deformation 
so defined contains a component of lattice deformation due to the presence of internal defects.  
Since these terms are frequently employed in engineering applications of continuum plasticity to 
refer to deformation that does not specifically consider incompatibility of the crystal lattice, we 
prefer to avoid them in discussing crystal plasticity.   

3.4 The Nye Tensor and Lattice Deformation 
The local state of deformation of a crystal lattice is described in terms of the Nye tensor [27], 
lattice curvature tensor and the gradient of lattice strain [5].  The Burgers vector flux across an 
area element can be expressed in terms of either the True Burgers Vector (TBV), measured in the 
perfect reference lattice, or the Local Burgers Vector (LBV), measured in the deformed lattice.  
In this work we employ the TBV and the associated Nye tensor defined by Bilby:   

  (21) 
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where the negative sign in the superscript indicates the inverse of the tensor.  If all deformation 
components are small in the usual mathematical sense, the multiplicative decomposition of 
Equation (20) can be approximated by  

  (22) 

where and  are, respectively, the distortion of the crystal lattice and the stress-free 
distortion due to dislocation motion.  For this small deformation approximation , 
leading to the relationship  

  (23) 

By Equation (22) and the continuity of u: 

  (24) 

where the gradients in Equations (23) and (24) are taken in the appropriate coordinates. 

While finite lattice deformations accompanied by gradients in lattice strain can occur in 
experiments such as bending of single crystal beams [26] and wedge indentation of single 
crystals [20], we observe that lattice strains and strain gradients are expected to be much smaller 
than lattice rotations and curvatures due to the fact that the former increase the internal energy 
density of the crystal while the latter do not.  Thus the capacity of a crystalline material to sustain 
an increase in internal energy due to deformation does not impose limitations on lattice rotations 
and curvatures to the same extent that it does on lattice strains and strain gradients. 

Employing the polar decomposition of FL into a rotation matrix, RL and a symmetric Cauchy-
Green tensor, we observe that the dominant role of lattice rotation in lattice distortion permits 
replacing the Cauchy-Green tensor by I, the Identity Tensor.  Then applying the definition of the 
Nye tensor, Equation (21), yields:   

  (25) 
Of the several possible methods of expressing RL the Rodrigues rotation formula provides the 
most convenient form for this purpose [30].  In this description an arbitrary lattice vector is 
rotated in the right-handed sense through an angle θ about an axis parallel to the unit vector, m.  
The resulting rotation matrix is  

 
 (26) 

where the second-rank tensor operator = m ×.  A more compact notation for subsequent 
operations can be developed in terms of the vector, , the dual vector to the rotation 
matrix.  Utilizing the property of rotation matrices that the inverse is equal to the transpose and 
noting that the first and third terms of Equation (26) are symmetric permits us to write  

  (27) 
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Then defining , Equation (25) becomes  

 
 (28) 

where the tilde indicates the transpose of the tensor and Tr(X) is the trace of X.  Equation (28) is 
valid for both finite and infinitesimal deformation with the appropriate adjustments to the 
definition of ϕ for finite and infinitesimal lattice rotations. 

3.4.1 Definition of the Dislocation Density Vector 
In the following section we describe how the deformation of a crystal due to dislocation motion 
can be characterized by a set of vectors, lying in the active slip planes that characterize the 
dislocation content of each active slip system.  The development begins by following the 
approach of Arsenlis and Parks [1] relating the Nye tensor and local lattice curvature to the 
Geometrically Necessary Dislocation (GND) density of a crystal [2].  However we depart from 
these authors in our choice of a measure of the dislocation density. 

First, we note with A&P that the Nye tensor can be expressed in terms of a sum of dyadic 
products of vectors on each active slip system.  One of these vectors is the Burgers vector, b(k), 
on the kth slip system and the other is related to the dislocation content and distribution on 
parallel slip planes of the kth slip system that are contained in the volume element analyzed.  
These Dislocation Density Vectors (DDVs) and their associated Burgers vectors are related to 
the local state of lattice curvature and local gradients of lattice strain [13, 14]. 

 
Figure 2.  Dislocations Intersecting Volume Element 

To determine the DDVs for each slip system we refer to Figure 2 illustrating a small volume 
element of thickness, dt, area, A, and unit normal, n.  The volume element contains a distribution 
of dislocation lines that, for the sake of the present argument, all have the same Burgers vector, 
b.  The parallel surfaces have unit outward normals, n, that are intersected by dislocations of 
various orientations.  Some of these lines intersect parallel surfaces separated by dt, some 
intersect only one such surface and some lie on planes sufficiently near to being normal to n that 
they do not intersect the surfaces normal to n at all.  In the subsequent discussion we consider 
only segments that intersect both surfaces normal to n. 
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As noted by Arsenlis and Parks, the contribution to lattice curvature due to a generally curved 
dislocation that intersects both surfaces normal to n is measured by the length connecting 
intersections on opposite surfaces.  This is the component of length that contributes to the GND 
density.  Any additional length due to the departure of the dislocation from a straight line 
contributes an equal length of dislocation line containing components of opposite sense that 
produce no net contribution to the local lattice curvature.  This additional line length adds to the 
internal strain energy of the crystal, however, and constitutes the contribution of the dislocation 
segment to the Statistically Stored Dislocation (SSD) density [2].   

With each dislocation segment contained in the volume element that intersects unit area normal 
to n we associate not only a Burgers vector, but also a unit tangent vector at the point of 
intersection with the surfaces normal to n.  Choosing the Burgers vectors of all dislocations to 
have the same sense then requires us to assign a sense to each unit tangent vector, which we do 
following the FS/RH convention [4].  In this convention the sense vector of a r.h. screw 
dislocation is parallel to the Burgers vector, while a l.h. screw dislocation is anti-parallel to it, 
and the positive normal to the slip plane points towards the extra half-plane of a positive edge 
dislocation. 

Considering the upper surface of the volume element, for which the outward pointing unit 
normal is +n , we note that the Burgers vector flux due to dislocations intersecting A  is equal to 
the Burgers vector of a single dislocation times the net number of dislocations intersecting the 
area divided by the magnitude of A.  The net number of dislocations intersecting A is determined 
by assigning a positive or negative value to each intersection according to whether the unit 
tangent vector of the dislocation, t , makes an acute (+) or obtuse (-) angle with n , corresponding 
to the dislocation entering or leaving the volume element.  This condition can be expressed as 
sgn [N(i)] = sgn [n ⋅ t(i)],  where N(i) refers to the intersection of the ith dislocation with A and t(i) 
is the unit tangent vector of the dislocation at the point of intersection.  Using this convention for 
the sign of an intersection we define the total positive and negative intersections, N+ and N-, 
respectively.  Clearly if these values are equal, the net Burgers vector flux vanishes for the area 
sampled. 

Notice that this definition applies to the senses of intersections with the sampling plane not the 
dislocations.  For a pair of dislocations to have opposite sense, each dislocation must have both 
its edge and screw components of opposite sense to the corresponding component of the other 
dislocation.  Although no ambiguity can arise in assigning a positive or negative sense to pure 
edge or pure screw dislocations or to mixed dislocations in which both the edge and screw 
components are the same sense, it is not possible to devise a self-consistent convention for 
assigning a positive or negative sense to a general mixed dislocation.  It is quite possible for two 
parallel mixed dislocations to have edge segments of the same sense and screw segments of 
opposite sense and vice versa.  Thus is clearly inappropriate in such a case to assign a single 
sense to either dislocation.  However no such ambiguity arises in assigning a sense to the 
intersection of dislocations with a sampling plane, as defined above. 

Now consider a situation in which a single slip system is active, the senses of all intersections are 
the same and the total number of intersections is N.  Referring to Figure 2 we note that the 
length, projected parallel to n, of each segment threading the volume element is equal to dt, 
regardless of the length of the segment itself.  So the total projected length of dislocations 
piercing the element is equal to Ndt.  The projected length per unit volume follows from dividing 
this length by the volume, V = A dt.  This yields the result that NA(n), the number of 
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intersections per unit area normal to n , is equal to the length of dislocations, projected parallel to 
n , per unit volume.  We use this fact to define a DDV for each slip system, ρ(k), such that 

 [13].  It follows that the dimensions of ρ(k) are length per unit volume.  Arsenlis 
and Parks employed a similar concept, but without defining a DDV related to the projected 
length of dislocations as described above. 

3.4.2 Derived DDVs and Their Interpretation 
In this section we develop further the concept of the DDV to illustrate how the concepts of the 
Geometrically Necessary Dislocation density, Statistically Stored Dislocation density and Total 
Dislocation Density can be related to the DDV definition††.  This separation enables appropriate 
measures of dislocation content to be inserted in constitutive equations for the description of 
single crystal deformation.  Finally we note that Dislocation Dynamics codes are all capable of 
providing output in the form of the Burgers vectors and the coordinates of the end points of 
dislocation segments at the end of each computation step.  Thus numerical data for the 
computations outlined in the following discussion are readily available from such simulations. 

Although the definition of the DDV described above is useful for relating the GND to the Nye 
tensor, the vector sum obscures some important aspects of the dislocation population.  Additional 
information can be obtained by collecting screw and edge components of like sign to define 
signed components of the DDV.  If only information on GND density is required, this separation 
into the sources of the edge and screw components is unnecessary.  However consideration of the 
origins of the various components provides more useful detail on the character of the dislocation 
distribution. 
In an earlier section we noted the impossibility of choosing a self-consistent definition of sign for 
a mixed dislocation.  This proves problematical in relating the motion of actual dislocations to 
the DDV description, since the latter is based on the projected length of dislocations along the 
slip direction and Taylor axis.  Accordingly, we propose a nomenclature for dislocations 
according to the relative signs of its edge and screw components.  Using the FS/RH convention 
described earlier for relating the sense of the dislocation segment to the true Burgers vector, 
designate mixed dislocations whose edge and screw components have the same sense as Mixed 
Dislocations of the First Kind (1), and mixed dislocations whose edge and screw components 
have opposite senses, as Mixed Dislocations of the Second Kind (2).  Pure edge and screw 
dislocation segments will be designated as the Zeroth Kind (0).   

Using this naming convention the screw (S) and edge (E) components of the DDV due to 
dislocation segments of each kind, on a each slip system, become: 

• S (E) components due to pure screw (edge) segments:    

• S (E) components due to Mixed Dislocations of the First Kind:    

• S (E) components due to Mixed Dislocations of the Second Kind:   

                                                 
†† A portion of this work was performed while the author was a Visiting Researcher at MPIE, Düsseldorf, Germany. 
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The net projected length of screw and edge segments can now be expressed as 

 
 (29) 

where  are the numbers of the segments of the indicated type (i = 1,2,S,E) and sign.  The 
magnitudes of the signed screw and edge components of the DDV can also be expressed in terms 
of this notation as follows:   

 
 (30) 

where the notation ±S(E) indicates that the expression applies to both screw (S) and edge (E) 
components with the indicated sign This procedure extends the definition of the DDV proposed 
by Hartley [12, 13, 14] consisting only of positive and negative components, ρ+ and ρ-, which are 
formed by arbitrarily grouping projections of screw and edge segments having like sign without 
regard to the sense of the accompanying components.  The screw component of ρ+ is ρ+S , and 
the corresponding component of ρ-is ρ-S , with similar expressions relating the edge components.   

Now we describe three derived vectors, ρG, ρT and ρSS, all formed from various combinations of 
the projected components described above.  It should be noted, however, that only for ρG does 
the sense of the vector bear a direct physical significance to the resultant Burgers vector of the 
population.  In fact the resultant Burgers vector of dislocations associated with ρT is the same as 
that for ρG and the resultant Burgers vector for ρSS vanishes by definition.  The senses of ρT and 
ρSS are selected on the basis of consistency with the concept of conservation proposed by Ashby 
[2] for components of the scalar lengths per unit volume. 

Dislocation segments in the population are projected parallel to η and ξ and summed to obtain 
the positive and negative screw and edge components as indicated by Equation (29) et seq.  The 
sums of projections of the individual segments along ±η and ±ξ form the components ρ±S(E).  
Figure 3 shows a possible configuration.   
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Figure 3.  Possible Configuration of S and E Projections of DDV 

 

As previously shown, the Geometrically Necessary DDV, ρG, is the residual DDV formed from 
the portion of the screw and edge segments that are unpaired with ones of like character and 
opposite sense.  The edge and screw components of ρG can be expressed as: 

  (31) 

This quantity is related to the net Burgers vector of the dislocation population.  The relationship 
among the quantities is shown in Figure 4. 

 
Figure 4.  Relationship of GN DDV to S and E Components 
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In the example shown the numerically larger of both the screw and edge components of ρG are in 
the negative sense as shown by the direction of ρG in Figure 4. 

A Total DDV, ρT, can also be defined in terms of the total projected lengths of the screw and 
edge segments of the population.  The magnitude of this vector is:   

  (32) 

while its direction is arbitrarily determined by requiring that it lie in the same quadrant as ρG, i.e. 
ρT∙ ρG ≥ 0. Writing the Total DDV as  

 
 (33) 

can satisfy this condition, where H(x) is the Heaviside Step function, H(x) = 1 when x ≥ 0 and 
zero otherwise. 

Since ρT is formed from the sums of projected segment lengths, its magnitude is not equal to the 
total length of dislocations per unit volume.  However, if all dislocation segments are arcs of 
convex curves or closed convex curves lying in the same or parallel slip planes, the sum of the 
projected lengths along ±η and ±ξ (the L1 norm of ρT) forms an upper bound to the total length, 
while the magnitude of ρT (the L2 norm) is a lower bound.  Other dislocation arrangements that 
may lead to more complex relationships between the magnitude of the total DDV, the geometry 
of the actual dislocation array and the total dislocation line length will not be considered here. 

While ρG is that part of the total DDV due to unpaired edge and screw segments, ρSS, the 
Statistically Stored DDV, is formed from the projections of those segments of the population that 
have a counterpart of opposite sense.  The quantities that represent the screw and edge 
components of a vector with the necessary property are the numerically smaller of the positive 
and negative components of the corresponding orientations.  In the example given in Figure 3 it 
is evident that the positive screw and edge components are the smaller of the two values for each 
orientation.  Consequently, for this example the magnitude of ρSS is equal to twice the magnitude 
of the resultant of these two components.  The sense of ρSS follows from a conservation 
condition similar to that proposed by Ashby for the corresponding components of the scalar 
length per unit volume.  In the spirit of Ashby’s proposal, we define ρSS as the vector difference 
of ρT and ρG, which can be written explicitly as the difference between Equations (39) and (37).  
Figure 5 corresponds to the physical situation represented in Figures 3 and 4. 
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Figure 5.  Relationship among Derived DDVs 

 

The example in Figure 5.  Relationship Among Derived DDVs must not be interpreted as 
meaning that the edge and screw components of ρT and ρSS have unique physical senses, since 
both vectors have contributions from both positive and negative edge and screw components of 
the dislocation distribution.  Their sense is determined entirely by the conservation postulate, 
which requires that they lie in the same quadrant as ρG, whose orientation does, however, have a 
unique physical significance.  When the distribution of dislocations has a vanishing net Burgers 
vector, ρG is identically zero, |ρT| = |ρSS| and the direction of the latter two derived vectors is 
indeterminate. 

In a study of plane strain plasticity of a single crystal, Lardner proposed two tensors related to 
the Nye tensor [21].  One is associated with the “net” dislocation content and the other “total” 
dislocation content.  The tensors are formed from two “signed” Nye tensors each defined as in 
Equation (31) but using dislocations of opposite signs.  In this study the dislocation content was 
limited to two sets of edge dislocations with different Burgers vectors, so the non-uniqueness of 
the signs of dislocations does not arise as it does for the general case.  Lardner’s difference 
tensor, ∆, is the algebraic sum of these signed tensors, which yields the tensor originally derived 
by Nye.  Lardner’s Absolute tensor, Λ, is the algebraic difference of these signed tensors for 
each active slip system.  Although similar in form to the Nye tensor, this quantity does not bear a 
straightforward relationship to the changes in lattice geometry caused by dislocation motion.  
These concepts are difficult to generalize to a crystal deforming by mixed dislocations on 
multiple slip systems because of the uncertainty in assigning a unique sense to a general mixed 
dislocation, as described earlier. 
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The Nye tensor formed from a non-vanishing ρG does have a unique sense as shown in the 
definition.  So ∆ is identical to ρG.  Since Lardner’s definition for Λ is based on the difference of 
quantities of opposite sign, it includes contributions from all dislocation segments present, which 
logically associates it with ρT: 

 𝚲=b � ρT (34) 
It should be noted that the uniqueness of this definition depends on the existence of a non-
vanishing ρG, as discussed earlier.  Although not included in Lardner’s treatment, an additional 
tensor associated with ρSS can be similarly defined as 

 𝚲S=b ⨂ ρSS (35) 

The role of this tensor in Lardner’s theory should be analogous to the role of ρSS in Ashby’s 
description of the role of various components of the dislocation distribution in plastic 
deformation.  The same caveat on uniqueness as for Λ applies to this tensor.  As in the case of Λ, 
this tensor is not related to changes in the lattice geometry. 

3.5 Motion of Groups of Dislocations 
The behavior of groups of dislocations is determined by their equilibrium positions under the 
action of external forces and mutual interaction forces under specified boundary conditions.  This 
group response, an example of the phenomenon of emergence as defined for animated graphics 
simulations of flocking behavior, can be described by the behavior of moments of the 
distribution function for the group.  Constitutive equations suitable for mesoscopic description of 
dislocation behavior can then be developed in terms of the response of these moments to the 
local stress environment expressed in terms of a virtual force on the configuration.  Discrete DD 
simulations of dislocation configurations involve applying to elements of each dislocation in a 
computational cell the forces arising from interactions with other dislocations in the cell and 
lattice resistance forces under specified boundary conditions on the cell.  A yet unexploited result 
from these computations is the capability for developing constitutive relations for the group 
behavior of dislocations at these scales.  The goal of such an effort is to find appropriate 
relationships between the virtual force on the array and the resulting motion of the array.  Before 
this can be accomplished, it is necessary to find methods of characterizing the dislocation array 
in terms of the properties of an appropriate distribution function. 

The following discussion shows how centroids and dipole moments of the net distribution of 
dislocations can be measured.  Arrays are then described in terms of dislocation density vectors 
for positive and negative dislocations located at the centroid of the respective arrays and motion 
of the arrays is described in terms of the motion of the centroids.  The force on the arrays is the 
Peach-Koehler force on the dislocation density vectors.  Stresses in the body outside the 
computational cell due to the dislocation array in the computational cell can be calculated in 
terms of the net dislocation density and the dipole strength of the array, taking the as origin the 
centroid of the computational cell. 

As an example of such a calculation consider the following procedure for computing the 
dislocation density tensor, the centroids of the distributions and the dipole moments for a  
2-dimensional array of dislocations.  Consider an array of straight, mixed dislocations having 
zero net Burgers vector and lying on four slip systems in a body-centered cubic crystal.  Let the 
unit tangent vectors parallel or antiparallel to 010   .  Two systems each are on ( )101  and 
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( )101 planes, corresponding to the slip directions 111    and 111   , and 111    and[ ]111 , 
respectively.  The sense of the Burgers vector of dislocations on each system is the same, with 
the sense of each dislocation given by the sense of its tangent vector.  Horizontal and vertical 
axes are 101    and[ ]101 , respectively. 

Applying the definition of the Nye tensor to dislocations on the ±kth slip system gives  

 
 (36) 

where ± designates the sense of the quantity, ξ(±k) is a unit vector indicating the sense of the 
dislocation, b(k) is the Burgers vector, n(±k) is the number of dislocations intersecting unit area 
normal to ξ(±k) and ρ(±k) = n(±k) ξ(±k) is the dislocation density vector.  Note that the sense of b is 
the same for both positive and negative values of ξ.  Locations of dislocations in the 
computational cell are specified by their coordinates, , where i = 1,2.  The centroid of each 
array is located at the average of coordinates for the type of dislocations in the array:   

 
 (37) 

The velocity of each distribution, , is defined as the time rate of change of its 
centroid.  The dipole moment of the kth array of positive and negative dislocations having the 
same Burgers vector but opposite sign is related to the separation of the centroids of their 
distributions:   

 
 (38) 

since n(+k) = n(-k) = n(k) .  The dipole tensor per unit area for each slip system is  

 
 (39) 

The force on each array is conveniently expressed in terms of a virtual (body) force on the 
dislocation density vector for each type of dislocation:   

  (40) 
A mobility for each distribution can now be defined as the second rank tensor relating this force 
to the velocity of the configuration as defined above.  These definitions permit a description of 
the results of DD simulations to be expressed in terms of continuum quantities that can be 
employed in the formulation of mesoscale constitutive laws for the behavior of dislocation 
arrays.  Extension to 3D arrays is straightforward. 
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4.0 RESULTS AND DISCUSSION 
4.1 Background 
In experimental studies of the deformation of crystals, those that employ diffraction techniques 
using electrons, x-rays or neutrons provide information for the determination of lattice 
deformation.  Present electron diffraction techniques now permit measurement of lattice rotations 
and strains over distances comparable to the spacing between dislocations.  Complementary 
measurements of changes in the size and shape of grids applied to the surfaces or embedded 
within undeformed bodies give information for calculating shape deformation of the crystal.  
Combining these techniques offers an unprecedented opportunity for more detailed studies of the 
deformation of crystals at the micro-scale than has hitherto been possible. 

Current advanced EBSD analyses of deformed single crystals are capable of detecting lattice 
rotations with a 3-micron spatial resolution [20].  This permits determination of local lattice 
curvatures and Nye tensor components from which lower bounds on the GND density can be 
computed.  The distribution of GNDs on active slip planes can be further explored using 
concepts introduced by Arsenlis and Parks [1] and Hartley [12, 13].  In the following section we 
describe how plane strain deformation experiments of FCC crystals are employed to determine 
the character of the GND distribution, expressed in terms of the Dislocation Density Vector. 

4.2 Plane Strain Deformation 
Relationships among the amounts of dislocation motion on each slip system active in isochoric 
plane dislocation strain along the x3 specimen axis follow from the conditions , and, 

since plane strain conditions require , the constancy of volume leads to .  
Expressed in specimen coordinates dislocation (plastic) strain components in terms of dislocation 
motion on M slip systems become:   

  ,   i = 1…3 (41) 

and 

 
 (42) 

where b is the magnitude of the Burgers vector (assumed to be equal on all active slip systems), 
A(k) is the magnitude of the area swept out by moving dislocations on the kth slip system, and 

 and are, respectively, components of unit vectors along the slip direction and normal to 
the slip plane of the kth slip system, expressed in specimen coordinates.  The terms in brackets in 
Equation (41) and (42) are components of the Schmid Tensors on the active slip systems.  Each 
A(k)is the magnitude of a vector normal to the slip plane of the kth slip system having a value 
equal to the net area swept out (per unit volume) by dislocations with Burgers vector b(k) during 
the deformation process. 

Equation (41) and (42) show that there are four independent as s for the twelve A(k).  Since this is 
generally fewer than the unknown A(k), a lower bound for the A(k) can be obtained by solving 
Equation (41) and (42) using the Simplex method with the constraint that the sum of the absolute 



25 
Approved for public release; distribution unlimited. 

values of the A(k) be a minimum, similar to the procedure by which a lower bound to the GN 
DDV components is obtained from measurements of the Nye tensor [1]. 

Since each slip plane in FCC crystals has three possible slip systems, a strain component due to 
slip on a particular plane is not uniquely associated with slip by dislocations of a particular 
Burgers vector.  Slip system coordinates must be selected so that the sum of Burgers vectors that 
share a common slip plane sum to zero.  Then a negative value for A(k) indicates dislocation 
motion on that slip plane in a sense opposite to that assumed.  An estimate of the relative values 
of the resolved shear stresses on the slip systems follows from constructing an effective “plane 
strain stress tensor” that can be used to determine which slip systems have a vanishing resolved 
shear stress [20]. 

The local state of deformation of a crystal lattice is described in terms of the second rank Nye 
tensor, , the gradient of lattice strain and the lattice curvature tensor, , where  is the 
dual vector of the lattice rotation tensor, RL .  For situations where lattice strains and strain 
gradients are negligible relative to lattice rotations  

  (43) 

where I is the unit tensor, Tr(X) is the trace of X and the tilde indicates the transpose.  When 
finite lattice deformations occur in experiments such as bending of single crystal beams [25] and 
wedge indentation of single crystals we expect these conditions to be satisfied. 

4.3 Nye Tensor Components 
Finally we note that the Nye tensor can be expressed in terms of a sum of dyadic products of 
vectors on each active slip system.  One of these vectors is the Burgers vector, b(k), on the kth slip 
system and the other is related to the dislocation content and distribution on parallel slip planes 
of the kth slip system that are contained in the volume element analyzed.  These DDVs and their 
associated Burgers vectors are related to the local Nye tensor components for the kth slip system.   

The Nye tensor relates the Burgers vector flux, B, across a plane to the orientation of the plane.  
For M active slip systems  

 
 (44) 

Replacing  by its definition above gives  

 
 (45) 

whence we obtain the relationship 

 
 (46) 

in terms of Nye tensors and DDVs for each active slip system.  Then according to Equation (46) 
the Nye tensor for each slip system is the dyadic product of the Burgers vector and the DDV for 
that system. 
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On each slip system the DDV can be expressed in terms of a component parallel to the slip 
direction, , and a component normal to the slip direction, .  The angle Ψ, defined by  

 
 (47) 

is a measure of the screw-edge character of the GND distribution on the kth slip system.  The 
trace of the Nye tensor, Tr(α), is  

 
 (48) 

which clearly depends only on the screw components of the DDV on each slip system.  Also, the 
vector product of the Burgers vector and the DDV on each system is a vector normal to the slip 
plane of the system.  So the dual vector associated with the Nye tensor,  

 
 (49) 

depends only on the edge components of the DDVs.  It is the sum of vectors normal to each slip 
plane, each having a magnitude equal to the product of the Burgers vector and the edge 
component of the DDV on each slip system. 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 
Research performed on this subcontract has provided the theoretical and analytical foundation 
for the treatment of data obtained by Dislocation Dynamics simulations and experimental studies 
of single crystal deformation to provide constitutive relations relating the local state of stress to 
the content and motion of dislocation populations.   
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